
Algorithms
Arthur Hoskey, Ph.D.

Farmingdale State College
Computer Systems Department

Today’s Lecture

 Merge Sort Overview
 Master Theorem

© 2021 Arthur Hoskey. All
rights reserved.

Merge Sort

Merge Sort Overview
 Merge sort is a faster sorting algorithm than insertion

sort, selection sort, or bubble sort.
 The general idea is as follows:
◦ Keep splitting the list into smaller lists and sort the smaller lists

individually.
◦ Combine the smaller sorted lists to get the whole sorted list.

 This is an example of a "Divide and Conquer"
algorithm.

© 2021 Arthur Hoskey. All
rights reserved.

Merge Sort

 Keep splitting elements until it is a list of 1.
 Combine lists in sorted order.

© 2021 Arthur Hoskey. All
rights reserved.

7 19 5 16 20 9 12 3

7 19 5 16 20 9 12 3

Keep
Splitting

Data Until
its down to
1 element

7 19 5 16 20 9 12 3

165197 20 9 12 3

7 19 5 16 9 20 3 12

1
element

lists

Combine
lists5 7 16 19 3 9 12 20

3 5 7 9 12 16 19 20

Merge Sort Pseudocode

Merge Sort Pseudocode

Mergesort(List L)
If list contains 1 element return (already sorted)
Divide list L into two equal size lists (L1 and L2)
SortedL1 = Mergesort(L1)
SortedL2 = Mergesort(L2)
SortedL = Merge(SortedL1, SortedL2)
Return SortedL

Merge(List L1, List L2)
Loop and combine two lists. Always take the lowest
element from each list.
Return merged list

© 2021 Arthur Hoskey. All
rights reserved.

Mergesort returns a sorted list

Combine the two sorted

lists into one sorted list

Merge Sort Recurrence

Merge Sort Recurrence

 T(n) = 2 * T(n/2) + Θ(n)

 There are two recursive calls to merge sort on the
half size lists (2 * T(n/2).

 The Θ(n) is the cost to combine the lists.

Divide list L into two equal size lists (L1 and L2)
SortedL1 = Mergesort(L1)
SortedL2 = Mergesort(L2)
SortedL = Merge(SortedL1, SortedL2)

© 2021 Arthur Hoskey. All
rights reserved.

2 recursive calls to merge sort

each on half the list so 2*T(n/2)

Combine lists. This visits each

item once so Θ(n).

Recursive call is

on half the list
Two recursive

calls Merge the lists

Merge Sort

Merge Sort

 T(n) = 2 * T(n/2) + Θ(n)

© 2021 Arthur Hoskey. All
rights reserved.

n

2 recursive calls

n/2 n/2

…

…
n=2*n/2

for level

n/4 n/4…

log2 n

levels

n/4 n/4…

n/8 n/8… n/8 n/8…

2 recursive

calls

2 recursive

calls
n=4*n/4

for level

…
n=8*n/8

for level

n=1*n

for level

n work done at each level of tree.

There are log2 n levels.

Cost is O(n* log2 n)

Note: There are actually (log2 n + 1)

levels, but we can ignore the +1

Work done

at each level

of

levels

Master Theorem – Divide and
Conquer

Master Theorem

 Easier way to find asymptotic bounds of a recurrence
relation.

 Only works on some types of recurrences (divide and
conquer).

 Allows you to plug in values and figure out the
runtime (assuming the recurrence has the proper
form).

 Using the master theorem follows the form of the
previous example with a few extra calculations.

© 2021 Arthur Hoskey. All
rights reserved.

Master Theorem – Divide and
Conquer

Master Theorem

 The master theorem takes a recurrence (of the
correct form) as input and returns a runtime.

© 2021 Arthur Hoskey. All
rights reserved.

Master Theorem
Input

Divide and Conquer

Recurrence Relation

Output

Runtime

Master Theorem – Divide and
Conquer

Master Theorem Requirements

 Using the master theorem requires that we have a recurrence
in the following form:

 T(1) = O(1)

 T(n) = a * T(n/b) + O(nd)

a>=1, b>1

Description of Pieces

 a - Number of subproblems (a >= 1)

 b – Factor for dividing problem (b > 1)

 O(nd) – Non-recursive piece of function.

© 2021 Arthur Hoskey. All
rights reserved.

Work done in

recursive call

Work done

outside recursion Note: b must be greater than 1 so that

we are making the problem smaller in

the recursive calls

Note: All subproblems must

have the same size

Must divide into subproblems

Work done outside must be a

polynomial

Master Theorem – Divide and
Conquer

Master Theorem

 T(n) = a * T(n/b) + O(nd)

© 2021 Arthur Hoskey. All
rights reserved.

Data
(size n)

a recursive calls

n/b n/b

…

…
n/b is the data

size in the

recursive calls

n/b2 n/b2…

logb n

levels

n/b2 n/b2…

n/b3 n/b3… n/b3 n/b3…

a recursive

calls

a recursive

calls

Master Theorem – Divide and
Conquer

Master Theorem Procedure
1. Check if recurrence is in correct form.
2. Calculate a, b, and d.
3. Use master theorem rules to determine the

runtime.

 T(n) = a * T(n/b) + O(nd)

a>=1, b>1

© 2021 Arthur Hoskey. All
rights reserved.

Must divide into subproblems

in recursive call

Master Theorem – Divide and
Conquer

Calculate a, b, d

 T(n) = a * T(n/b) + O(nd)

 T(n) = 2 * T(n/2) + 1

© 2021 Arthur Hoskey. All
rights reserved.

a is 2 b is 2 d is 0

Must divide into

subproblems
Work outside recursion

is a polynomial

Master Theorem – Divide and
Conquer

Master Theorem Rules (Overview)

 When you have the values of a, b, and d you can
check the cases.

Here is an overview of the main cases:

 Case 1: If (a>bd) then O(nlogba)

 Case 2: If (a=bd) then O(nd log n)

 Case 3: If (a < bd) then O(nd)

© 2021 Arthur Hoskey. All
rights reserved.

Most work is done at leaves

Most work is done at root

Even amount of work

done at root and leaves

Master Theorem - Exercise

Exercise

 T(n) = 2 * T(n/2) + n

Solution

Here is the general form: T(n) = a *T(n/b) + f(n)

T(n) = 2 * T(n/2) + O(n1)

1. Calculate a, b, d. a=2, b=2, d=1.

2. Check Cases. The following case works:

a = bd

2 = 21

2 = 2 (true!)

Answer

O(nd log n) → O(n1 log n) → O(n log n)

© 2021 Arthur Hoskey. All
rights reserved.

a b

a = bd case applies so the

answer is in the form O(nd log n)

d

Has required form for

master theorem

Master Theorem - Exercise

Exercise

 T(n) = 4 * T(n/2) + n

© 2021 Arthur Hoskey. All
rights reserved.

Master Theorem - Exercise

Exercise

 T(n) = 4 * T(n/2) + n

Solution

Here is the general form: T(n) = a *T(n/b) + f(n)

T(n) = 4 * T(n/2) + O(n1)

1. Calculate a, b, d. a=4, b=2, d=1.

2. Check Cases. The following case works:

a > bd

4 > 21

4 > 2 (true!)

Answer

O(nlogba) → O(nlog24) → O(𝐧𝟐)

© 2021 Arthur Hoskey. All
rights reserved.

a b

a > bd case applies so the

answer is in the form O(nlogba)

d

Has required form for

master theorem

Master Theorem - Exercise

Exercise

 T(n) = 4 * T(n/2) + n2

© 2021 Arthur Hoskey. All
rights reserved.

Master Theorem - Exercise

Exercise

 T(n) = 4 * T(n/2) + n2

Solution

Here is the general form: T(n) = a *T(n/b) + f(n)

T(n) = 4 * T(n/2) + O(n2)

1. Calculate a, b, d. a=4, b=2, d=2.

2. Check Cases. The following case works:

a = bd

4 = 22

4 = 4 (true!)

Answer

O(nd log n) → O(n2 log n)

© 2021 Arthur Hoskey. All
rights reserved.

a b d

a = bd case applies so the

answer is in the form O(nd log n)

Has required form for

master theorem

Master Theorem - Exercise

Exercise

 T(n) = T(n/2) + n2

© 2021 Arthur Hoskey. All
rights reserved.

Master Theorem - Exercise

Exercise

 T(n) = T(n/2) + n2

Solution

Here is the general form: T(n) = a *T(n/b) + f(n)

T(n) = 1 * T(n/2) + O(n2)

1. Calculate a, b, d. a=1, b=2, d=2.

2. Check Cases. The following case works:

a < bd

1 < 22

1 < 4 (true!)

Answer

O(nd) → O(n2)

© 2021 Arthur Hoskey. All
rights reserved.

a b d

a < bd case applies so the

answer is in the form O(nd)

Has required form for

master theorem

Master Theorem - Exercise

Exercise

 T(n) = T(n-1) + 1

© 2021 Arthur Hoskey. All
rights reserved.

Master Theorem - Exercise

Exercise

 T(n) = T(n-1) + 1

Solution

Here is the general form: T(n) = a *T(n/b) + f(n)

T(n) = T(n-1) + 1

© 2021 Arthur Hoskey. All
rights reserved.

Does not divide in the

recursive step so master

theorem does not apply.

Need to use other methods

to find the answer.

Does NOT have required

form for master theorem

Master theorem only works on a

divide and conquer recurrence

(b must be > 1)

End of Slides

 End of Slides

© 2021 Arthur Hoskey. All
rights reserved.

	Slide 1: Algorithms
	Slide 2: Today’s Lecture
	Slide 3: Merge Sort
	Slide 4: Merge Sort
	Slide 5: Merge Sort Pseudocode
	Slide 6: Merge Sort Recurrence
	Slide 7: Merge Sort
	Slide 8: Master Theorem – Divide and Conquer
	Slide 9: Master Theorem – Divide and Conquer
	Slide 10: Master Theorem – Divide and Conquer
	Slide 11: Master Theorem – Divide and Conquer
	Slide 12: Master Theorem – Divide and Conquer
	Slide 13: Master Theorem – Divide and Conquer
	Slide 14: Master Theorem – Divide and Conquer
	Slide 15: Master Theorem - Exercise
	Slide 16: Master Theorem - Exercise
	Slide 17: Master Theorem - Exercise
	Slide 18: Master Theorem - Exercise
	Slide 19: Master Theorem - Exercise
	Slide 20: Master Theorem - Exercise
	Slide 21: Master Theorem - Exercise
	Slide 22: Master Theorem - Exercise
	Slide 23: Master Theorem - Exercise
	Slide 24: End of Slides

