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Today’s Lecture

 Merge Sort Overview
 Master Theorem
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Merge Sort

Merge Sort Overview 
 Merge sort is a faster sorting algorithm than insertion 

sort, selection sort, or bubble sort.
 The general idea is as follows:
◦ Keep splitting the list into smaller lists and sort the smaller lists 

individually.
◦ Combine the smaller sorted lists to get the whole sorted list.

 This is an example of a "Divide and Conquer" 
algorithm.

© 2021 Arthur Hoskey. All 
rights reserved.



Merge Sort

 Keep splitting elements until it is a list of 1.
 Combine lists in sorted order.
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Merge Sort Pseudocode

Merge Sort Pseudocode 

Mergesort(List L)
If list contains 1 element return (already sorted)
Divide list L into two equal size lists (L1 and L2)
SortedL1 = Mergesort(L1)
SortedL2 = Mergesort(L2)
SortedL = Merge(SortedL1, SortedL2)
Return SortedL

Merge(List L1, List L2)
Loop and combine two lists. Always take the lowest 
element from each list.
Return merged list
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Mergesort returns a sorted list

Combine the two sorted 

lists into one sorted list



Merge Sort Recurrence

Merge Sort Recurrence 

 T(n) = 2 * T(n/2) + Θ(n)

 There are two recursive calls to merge sort on the 
half size lists  (2 * T(n/2).

 The Θ(n) is the cost to combine the lists.

Divide list L into two equal size lists (L1 and L2) 
SortedL1 = Mergesort(L1)
SortedL2 = Mergesort(L2)
SortedL = Merge(SortedL1, SortedL2)
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2 recursive calls to merge sort  

each on half the list so 2*T(n/2)

Combine lists. This visits each 

item once so Θ(n).

Recursive call is 

on half the list
Two recursive 

calls Merge the lists



Merge Sort

Merge Sort

 T(n) = 2 * T(n/2) + Θ(n)
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Master Theorem – Divide and 
Conquer

Master Theorem

 Easier way to find asymptotic bounds of a recurrence 
relation.

 Only works on some types of recurrences (divide and 
conquer).

 Allows you to plug in values and figure out the 
runtime (assuming the recurrence has the proper 
form).

 Using the master theorem follows the form of the 
previous example with a few extra calculations.

© 2021 Arthur Hoskey. All 
rights reserved.



Master Theorem – Divide and 
Conquer

Master Theorem

 The master theorem takes a recurrence (of the 
correct form) as input and returns a runtime.
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Master Theorem – Divide and 
Conquer

Master Theorem Requirements

 Using the master theorem requires that we have a recurrence 
in the following form:

 T(1) = O(1)

 T(n) = a * T(n/b) + O(nd)

a>=1, b>1

Description of Pieces

 a - Number of subproblems (a >= 1)

 b – Factor for dividing problem (b > 1)

 O(nd) – Non-recursive piece of function.
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Work done in 

recursive call

Work done 

outside recursion Note: b must be greater than 1 so that 

we are making the problem smaller in 

the recursive calls

Note: All subproblems must 

have the same size

Must divide into subproblems

Work done outside must be a 

polynomial



Master Theorem – Divide and 
Conquer

Master Theorem

 T(n) = a * T(n/b) + O(nd)
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Master Theorem – Divide and 
Conquer

Master Theorem Procedure
1. Check if recurrence is in correct form.
2. Calculate a, b, and d.
3. Use master theorem rules to determine the 

runtime.

 T(n) = a * T(n/b) + O(nd)

a>=1, b>1
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Must divide into subproblems 

in recursive call



Master Theorem – Divide and 
Conquer

Calculate a, b, d

 T(n) = a * T(n/b) + O(nd)

 T(n) = 2 * T(n/2) + 1
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a is 2 b is 2 d is 0

Must divide into 

subproblems
Work outside recursion 

is a polynomial



Master Theorem – Divide and 
Conquer

Master Theorem Rules (Overview)

 When you have the values of a, b, and d you can 
check the cases.

Here is an overview of the main cases:

 Case 1: If (a>bd) then O(nlogba)

 Case 2: If (a=bd) then O(nd log n)

 Case 3: If (a < bd) then O(nd)

© 2021 Arthur Hoskey. All 
rights reserved.

Most work is done at leaves

Most work is done at root

Even amount of work 

done at root and leaves



Master Theorem - Exercise

Exercise

 T(n) = 2 * T(n/2) + n

Solution

Here is the general form: T(n) = a *T(n/b) + f(n)

T(n) = 2 * T(n/2) + O(n1)

1. Calculate a, b, d. a=2, b=2, d=1.

2. Check Cases. The following case works:

a = bd

2 = 21

2 = 2 (true!)

Answer

O(nd log n) → O(n1 log n) → O(n log n)
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a b

a = bd case applies so the 

answer is in the form O(nd log n) 

d

Has required form for 

master theorem



Master Theorem - Exercise

Exercise

 T(n) = 4 * T(n/2) + n
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Master Theorem - Exercise

Exercise

 T(n) = 4 * T(n/2) + n

Solution

Here is the general form: T(n) = a *T(n/b) + f(n)

T(n) = 4 * T(n/2) + O(n1)

1. Calculate a, b, d. a=4, b=2, d=1.

2. Check Cases. The following case works:

a > bd

4 > 21

4 > 2 (true!)

Answer

O(nlogba) → O(nlog24) → O(𝐧𝟐)
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a b

a > bd case applies so the 

answer is in the form O(nlogba)

d

Has required form for 

master theorem



Master Theorem - Exercise

Exercise

 T(n) = 4 * T(n/2) + n2

© 2021 Arthur Hoskey. All 
rights reserved.



Master Theorem - Exercise

Exercise

 T(n) = 4 * T(n/2) + n2

Solution

Here is the general form: T(n) = a *T(n/b) + f(n)

T(n) = 4 * T(n/2) + O(n2)

1. Calculate a, b, d. a=4, b=2, d=2.

2. Check Cases. The following case works:

a = bd

4 = 22

4 = 4 (true!)

Answer

O(nd log n) → O(n2 log n)
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a b d

a = bd case applies so the 

answer is in the form O(nd log n) 

Has required form for 

master theorem



Master Theorem - Exercise

Exercise

 T(n) = T(n/2) + n2
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Master Theorem - Exercise

Exercise

 T(n) = T(n/2) + n2

Solution

Here is the general form: T(n) = a *T(n/b) + f(n)

T(n) = 1 * T(n/2) + O(n2)

1. Calculate a, b, d. a=1, b=2, d=2.

2. Check Cases. The following case works:

a < bd

1 < 22

1 < 4 (true!)

Answer

O(nd) → O(n2)
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a b d

a < bd case applies so the 

answer is in the form O(nd)

Has required form for 

master theorem



Master Theorem - Exercise

Exercise

 T(n) = T(n-1) + 1
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Master Theorem - Exercise

Exercise

 T(n) = T(n-1) + 1 

Solution

Here is the general form: T(n) = a *T(n/b) + f(n)

T(n) = T(n-1) + 1 
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Does not divide in the 

recursive step so master 

theorem does not apply. 

Need to use other methods 

to find the answer.

Does NOT have required 

form for master theorem

Master theorem only works on a 

divide and conquer recurrence

(b must be > 1)



End of Slides

 End of Slides
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